β-Lapachone

CAS号

4707-32-8

分子式

C15H14O3

主要靶点

Apoptosis|Autophagy|IDO|Topoisomerase

仅限科研使用

Cat No : CM00593

Print datasheet

Synonyms

IDO1|Autophagy|b-Lapachone|Beta-Lapachone|ARQ501|ARQ-501|ARQ 501|Apoptosis|3,4-二氢-2,2-二甲基-2H-萘并[1,2-B]吡喃-5,6-二酮|βLapachone|β-Lapachone|β Lapachone|Topoisomerase|SL11001|SL-11001|SL 11001|NSC26326|NSC-26326|NSC 26326|Inhibitor|inhibit



产品信息

CAS号 4707-32-8
分子式 C15H14O3
主要靶点 Apoptosis|Autophagy|IDO|Topoisomerase
主要通路 DNA 损伤和修复|代谢|凋亡|自噬
分子量 242.27
纯度 99.81%, 此纯度可做参考,具体纯度与批次有关系,可咨询客服
储存条件 Powder: -20°C for 3 years | In solvent: -80°C for 1 year | Shipping with blue ice.
别名 IDO1|Autophagy|b-Lapachone|Beta-Lapachone|ARQ501|ARQ-501|ARQ 501|Apoptosis|3,4-二氢-2,2-二甲基-2H-萘并[1,2-B]吡喃-5,6-二酮|βLapachone|β-Lapachone|β Lapachone|Topoisomerase|SL11001|SL-11001|SL 11001|NSC26326|NSC-26326|NSC 26326|Inhibitor|inhibit

靶点活性

IDO1:0.44 μM

体内活性

Beta-lapachone (50 mg/kg) 的处理在人类卵巢癌异种移植小鼠模型中显著抑制体内肿瘤生长,且与taxol联合使用可协同诱导凋亡。[6] 在正常及糖尿病(db/db)小鼠中,beta-lapachone的治疗相比于仅用载体的治疗可加速愈合过程。[3]

体外活性

Beta-Lapachone通过剂量依赖性方式抑制由DNA拓扑异构酶I引起的DNA松弛。[1] 对Beta-Lapachone(100 nM或更高浓度)的处理导致与DMSO对照相比,Topo I DNA解旋活性的抑制率超过95%。Beta-Lapachone(1-5 μM)通过锁定Topo I到DNA上并阻止复制叉移动,导致HL-60和三种人类前列腺癌细胞(DU-145, PC-3, 和LNCaP)的细胞周期在G0/G1阶段停滞并诱导细胞凋亡。[2] Beta-Lapachone促进小鼠3T3成纤维细胞和人类内皮EAhy926细胞通过不同的MAPK信号途径迁移,从而在体外加速刮擦伤口的愈合。[3] 此外,Beta-Lapachone通过不竞争性抑制作用抑制纯化的重组IDO1活性,IC50为0.44 μM;且Beta-Lapachone还展示出具有IC50为1.0 μM的高效细胞内IDO1抑制活性,该活性部分依赖于NQO1的生物转化。[4] Beta-Lapachone通过NQO1依赖性的活性氧(ROS)生成和PARP1过度激活诱导NQO1+癌细胞的程序性坏死。[5]

溶解度

Ethanol:12.1 mg/mL (50 mM);DMSO:50 mg/mL (206.38 mM)

细胞实验

IC50 calculations for each cell line are determined by DNA amount (IS) and anchorage-dependent colony formation (CF) assays. For the CF assay, cells are seeded at 500 viable cells/well in 6-well plates and incubated overnight, then treated with equal volumes of media containing beta-lapachone at final concentrations ranging from 0.005 to 50 μM in half-log increments (controls were treated with 0.25% DMSO, equivalent to the highest dose of beta-lapachonc used) for 4 hour or for continuous 12-hour exposures. Plates (3 wells/condition) are stained with crystal violet, and colonies of >50 normal-appearing cells are enumerated. IC50 values for various cells are calculated using drug doses with numbers of colonies surrounding 50% of control. For DNA assays, plates are harvested for IC50 determinations 8 days after treatment using a CytoFluor 2350 fluorescence measurement system. Six-well samplings are included in the calculation of DNA fluor units for each dose. A graph of beta-lapachone dose versus percentage control DNA in fluor units is used to calculate each IC50. All experiments are repeated at least twice, each in duplicate. (Only for Reference)

参考文献

1.Li CJ, et al. J Biol Chem. 1993, 268(30), 22463-22468.
2.Planchon SM, et al. Cancer Res. 1995, 55(17), 3706-3711.
3.Kung HN, et al. Am J Physiol Cell Physiol. 2008, 295(4), C931-943.
4.Flick HE, et al. Int J Tryptophan Res. 2013, 6, 35-45.
5.Huang X, et al. Cancer Res. 2012, 72(12), 3038-3047.
6.Kim TW, et al. β-Lapachone enhances Mre11-Rad50-Nbs1 complex expression in cisplatin-induced nephrotoxicity. Pharmacol Rep. 2016 Feb;68(1):27-31.
7.Wu L, Ma X, Yang X, et al. Synthesis and biological evaluation of β-lapachone-monastrol hybrids as potential anticancer agents[J]. European Journal of Medicinal Chemistry. 2020: 112594.

The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

质量   浓度   体积   分子量 *
=
×
×

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2

浓度 (start) × 体积 (start) = 浓度 (final) × 体积 (final)
×
=
×
C1   V1   C2   V2