

Product Code: hfma

Product Information

Description: The ChromoTek His Fab-Trap® Magnetic Agarose consists of an anti-His-tag Fab-fragment, which is coupled to magnetic agarose beads. It can be used for the immunoprecipitation of His-fusion proteins from cell extracts of various organisms.

Applications: IP, Co-IP

Specificity/Target: Binds specifically to the His-tag (also known as hexahistidine or His₆-tag) fused to a protein of interest at N-, C- or internal position. Please note that the affinity is highest for a C-terminal fusion (dissociation constant K_D of 10 nM for a C-terminal His-tag and 220 nM for an N-terminal His-tag).

Binding capacity: 10 µg of recombinant His-tagged protein (~30 kDa) per 25 µL bead slurry

Bead Size: 40 µm (cross-linked 6 % magnetic agarose beads)

Elution Buffer: 2x SDS-sample buffer (Lämmli), 200 mM glycine pH 2.5, 100 µM His-Peptide

Wash Buffer Compatibility: 2 M NaCl, 5 mM DTT, 5 mM β-mercaptoethanol, 5 mM TCEP, 2% NP40,

2% Triton X-100, 0.2% SDS, 5 M Urea

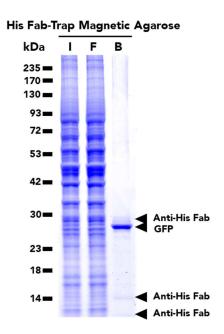
Ligand: Anti-His₆-Fab-fragment

Clone: Fab fragment of monoclonal mouse IgG1 1B7G5

Host: Mouse

Shipment: Shipped at ambient temperature

Storage Buffer: PBS pH 7.4. Preservative: 0.09 % sodium azide


Storage Condition: Upon receipt store at +4°C. Do not freeze!

Stability: Stable for 1 year upon receipt

Product Code: hfma

Selected Validation Data

Immunoprecipitation of GFP-His fusion protein using His Fab-Trap Magnetic Agarose. I: Input, F: Flow-through, B: Bound

Suggested Buffer Compositions for IP

Buffer	Composition	
Lysis Buffer	10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5 %	
	Nonidet™ P40 Substitute (adjust the pH at +4°C)	
RIPA Buffer	10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.1 % SDS, 1	
	% Triton™ X-100, 1 %	
	deoxycholate (adjust the pH at +4°C)	
Dilution Buffer	10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA (adjust the pH	
	at +4°C)	
Wash Buffer	10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.05 % Nonidet™ P40	
	Substitute, 0.5 mM EDTA (adjust the pH at $+4$ °C)	
2x SDS-sample buffer	120 mM Tris/Cl pH 6.8, 20 % glycerol, 4 % SDS, 0.04 %	
	bromophenol blue, 10 % β- mercaptoethanol	
Acidic elution buffer	200 mM glycine pH 2.5 (adjust the pH at +4°C)	
Neutralization buffer	1 M Tris pH 10.4 (adjust the pH at +4°C)	
Peptide elution buffer	100 μM His-Peptide (hp-1) reconstituted in PBS	

Note: Use your equivalent cell lysis buffer for other cell types like yeast, plants, insects, bacteria. Consider using a Wash buffer without detergent for Co-IP.

Product Code: hfma

Product Sizes

Product	Product Code	Size
His Fab-Trap® Magnetic Agarose	hfma-10	10 reactions
	hfma-20	20 reactions
	hfma-100	100 reactions
	hfma-200	200 reactions
	hfma-400	400 reactions

chromotek[®] His Fab-Trap® Magnetic Agarose

Product Code: hfma

Protocol at a glance

_		
General		 Perform all steps at 4°C Use your preferred cell lysis buffer and cell lysis conditions
Cell Lysis		 Use 10⁶-10⁷ cells and 200 μL Lysis buffer. Perform cell lysis and clear lysate Mix 200 μl cleared lysate with 300 μL dilution buffer.
Bead Equilibration		 Transfer 25 µL bead slurry into a 1.5 mL tube Equilibrate beads 3x with 500 µL dilution buffer
Protein binding		 Add 500 µL diluted lysate to beads Rotate end-over-end for 1 hour at 4°C.
Washing		 Wash beads 3x with 500 µL wash buffer Transfer beads to a new tube during the last washing step
	I FT B	Resuspend beads in 80 ut 2x SDS-

Elution with SDS-sample buffer

- Resuspend beads in 80 µL 2x SDSsample buffer
- Boil beads for 5 min at 95°C
- Analyze the supernatant in SDS-PAGE/ Western Blot

Product Code: hfma

Immunoprecipitation Protocol

Cell Material

The following protocol describes the preparation of a mammalian cell lysate.

For other type of cells, we recommend using 500 μg of cell extract and start the protocol with step Bead equilibration.

Mammalian Cell Lysis

Note: Harvesting of cells and cell lysis should be performed with ice-cold buffers. We strongly recommend adding protease inhibitors to the Lysis buffer to prevent degradation of your target protein and its binding partners.

For one immunoprecipitation reaction, we recommend using $\sim 10^6$ - 10^7 cells.

- 1. Choice of lysis buffer:
- a. For cytoplasmic proteins, resuspend the cell pellet in 200 μ L ice-cold Lysis buffer by pipetting up and down. Supplement Lysis buffer with protease inhibitor cocktail and 1 mM PMSF (not included).
- b. For nuclear/chromatin proteins, resuspend cell pellet in 200 μ L ice-cold RIPA buffer supplemented with DNase I (f.c. 75-150 Kunitz U/mL), MgCl₂ (f.c. 2.5 mM), protease inhibitor cocktail and PMSF (f.c. 1 mM) (not included).
- 2. Place the tube on ice for 30 min and extensively pipette the suspension every 10 min.
- 3. Centrifuge cell lysate at 17,000x g for 10 min at $+4^{\circ}$ C. Transfer cleared lysate (supernatant) to a pre-cooled tube and add 300 μ L Dilution buffer supplemented with 1 mM PMSF and protease inhibitor cocktail (not included). If required, save 50 μ L of diluted lysate for further analysis (input fraction).

Bead Equilibration

- 1. Resuspend the beads by gently pipetting them up and down or by inverting the tube. Do not vortex the beads!
- 2. Transfer 25 μ L of bead slurry into a 1.5 mL reaction tube.
- 3. Add 500 µL ice-cold Dilution buffer.
- 4. Separate the beads with a magnet until the supernatant is clear. Discard the supernatant.

Protein Binding

- 1. Add diluted lysate to the equilibrated beads.
- 2. Rotate end-over-end for 1 hour at $+4^{\circ}$ C.

Washing

- 1. Separate the beads with a magnet until the supernatant is clear.
- 2. If required, save 50 µL of supernatant for further analysis (flow-through/non-bound fraction).
- 3. Discard remaining supernatant.
- 4. Resuspend beads in 500 μL Wash buffer.

Product Code: hfma

- 5. Separate the beads with a magnet until the supernatant is clear. Discard the remaining supernatant.
- 6. Repeat this step at least twice.
- 7. During the last washing step, transfer the beads to a new tube.

Optional: To increase stringency of the Wash buffer, test various salt concentrations e.g. 150-500 mM, and/or add a non-ionic detergent e.g. Triton™ X-100 (see Wash buffer compatibility information for maximal concentrations).

Elution with 2x SDS-sample buffer (Laemmli)

- 1. Remove the remaining supernatant.
- 2. Resuspend beads in 80 μL 2x SDS-sample buffer.
- 3. Boil beads for 5 min at +95°C to dissociate immunocomplexes from beads.
- 4. Separate the beads with a magnet.
- 5. Analyze the supernatant in SDS-PAGE / Western Blot.

Elution with Acidic Elution Buffer

- 1. Remove the remaining supernatant.
- 2. Add 50-100 μ L Acidic elution buffer and constantly pipette up and down for 30-60 sec at +4°C or room temperature.
- 3. Separate the beads with a magnet until the supernatant is clear.
- 4. Transfer the supernatant to a new tube.
- 5. Immediately neutralize the eluate fraction with 5-10 μL Neutralization buffer.
- 6. Repeat this step at least once to increase elution efficiency.

Note: Elution at room temperature is more efficient than elution at +4°C. Prewarm buffers for elution at room temperature.

Elution with His-Peptide

- 1. Reconstitute 1 mg His-Peptide (hp-1) in 1190 µl PBS, which results in a final concentration of 1 mM. Vortex for 1 min to dissolve the powder and dilute to 100 µM for the working solution.
- 2. Remove the remaining supernatant.
- 3. Add 80 µL His-Peptide (100 µm) and mix using a pipette.
- 4. Incubate at 4-37 °C for 5 min under regular pipetting to ensure thorough mixing.
- 5. Separate the beads with a magnet until the supernatant is clear.
- 6. Transfer the supernatant to a new tube.
- 7. Repeat this step at least once to increase elution efficiency.

Note: Elution will be most efficient for N-terminal and internal His-tag fusions even at 4 °C. For C-terminal His-tag fusions, elute at 37 °C for up to 10 min.

Product Code: hfma

Related Products

Product	Code
His Fab-Trap® Agarose	hfa
His Fab-Trap® Agarose Kit	hfak
His Fab-Trap® Magnetic Agarose Kit	hfmak
His Fab-Trap® Magnetic Particles M-270	hfd
His Fab-Trap® Magnetic Particles M-270 Kit	hfdk
His-Peptide	hp-1

Contact

Proteintech North America (HQ)

Proteintech Group, Inc. 5500 Pearl Street, Suite 400 Rosemont, IL 60018 USA

1-888-472-4522 proteintech@ptglab.com

Proteintech Europe

Transmission (6th FI) 6 Atherton Street M3 3GS, Manchester, UK

+44 161 839 3007 europe@ptglab.com

ChromoTek & Proteintech Germany

Fraunhoferstr. 1 82152, Planegg-Martinsreid Germany

+49 89 124 148 850 germany@ptglab.com

Disclaimer

For research use only (RUO), not for diagnostic or therapeutic use. ChromoTek® and Fab-Trap® are registered trademarks of ChromoTek GmbH, part of Proteintech Group.