For Research Use Only

SCN9A/Nav1.7-Specific Polyclonal antibody

Catalog Number:20257-1-AP

7 Publications

Basic Information	Catalog Number: 20257-1-AP	GenBank Accessi NM_002977	on Number:	Purification Method: Antigen affinity purification	
	Size: 400 ug/ml	GenelD (NCBI): 6335		Recommended Dilutions: WB 1:500-1:1000	
	Source: Rabbit	UNIPROT ID: Q15858		IHC 1:50-1:500	
	Isotype: Full Name: IgG sodium channel, voltage-gated, type IX, alpha subunit				
		Calculated MW: 226 kDa			
		Observed MW: 226 kDa			
Applications	Tested Applications:		Positive Controls:		
	WB, IHC, ELISA Cited Applications:		WB : mouse brain tissue, mouse cerebellum tissue, pig brain tissue		
	WB, IF		IHC : mouse brain tissue,		
	Species Specificity: human, mouse, pig				
	Cited Species: mouse, rat				
	Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0				
Background Information	mediates the voltage-depen conformations in response t through which Na+ions may Na+ channel isoform. SCN9	ndent sodium ion permeabi o the voltage difference acr / pass in accordance with th a plays a role in pain mecha use of primary erythermalg	lity of excitable mer oss the membrane, S eir electrochemical nisms, especially in ia or autosomal rece	is to the sodium channel family. SCN9A nbranes. Assuming opened or closed SCN9A forms a sodium-selective channe gradient. It is a tetrodotoxin-sensitive the development of inflammatory pain ssive congenital indifference to pain or A	
	mediates the voltage-dependent conformations in response t through which Na+ ions may Na+ channel isoform. SCN94 Defects in SCN94 are the ca	ndent sodium ion permeabi o the voltage difference acr / pass in accordance with th a plays a role in pain mecha use of primary erythermalg isorder (PEPD). The antibod	lity of excitable mer oss the membrane, S eir electrochemical nisms, especially in ia or autosomal rece	nbranes. Assuming opened or closed iCN9A forms a sodium-selective channe gradient. It is a tetrodotoxin-sensitive the development of inflammatory pain ssive congenital indifference to pain or A	
	mediates the voltage-dependent conformations in response t through which Na+ ions may Na+ channel isoform. SCN92 Defects in SCN9A are the ca paroxysmal extreme pain d	ndent sodium ion permeabi o the voltage difference acr / pass in accordance with th a plays a role in pain mecha use of primary erythermalg isorder (PEPD). The antibod	lity of excitable mer oss the membrane, S eir electrochemical inisms, especially in ia or autosomal rece y is specific to SCN9,	nbranes. Assuming opened or closed CN9A forms a sodium-selective channe gradient. It is a tetrodotoxin-sensitive the development of inflammatory pain ssive congenital indifference to pain or	
	mediates the voltage-dependent conformations in response to through which Na+ ions may Na+ channel isoform. SCN99 Defects in SCN9A are the ca paroxysmal extreme pain do	ndent sodium ion permeabi o the voltage difference acr y pass in accordance with th a plays a role in pain mecha use of primary erythermalg isorder (PEPD). The antibod Pubmed ID Jo 31152853 Ne	lity of excitable mer oss the membrane, S eir electrochemical inisms, especially in ia or autosomal rece y is specific to SCN9, urnal eurosci Lett	hbranes. Assuming opened or closed GCN9A forms a sodium-selective channe gradient. It is a tetrodotoxin-sensitive the development of inflammatory pain ssive congenital indifference to pain or A Application	
Background Information	mediates the voltage-dependent conformations in response to through which Na+ ions may Na+ channel isoform. SCN96 Defects in SCN9A are the caparoxysmal extreme pain do Author Yi-Zhou Jin	ndent sodium ion permeabi o the voltage difference acr y pass in accordance with the a plays a role in pain mecha use of primary erythermalg isorder (PEPD). The antibod Pubmed ID Jo 31152853 Ne 28349234 In	lity of excitable mer oss the membrane, S eir electrochemical nisms, especially in ia or autosomal rece y is specific to SCN9.	hbranes. Assuming opened or closed iCN9A forms a sodium-selective channe gradient. It is a tetrodotoxin-sensitive the development of inflammatory pain ssive congenital indifference to pain or A Application WB,IF	

For technical support and original validation data for this product please contact:T: 4006900926E: Proteintech-CN@ptglab.comW: ptgcn.com

This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

Selected Validation Data

Various lysates were subjected to SDS PAGE followed by western blot with 20257-1-AP (SCN9A/Nav1.7-Specific antibody) at dilution of 1:500 incubated at room temperature for 1.5 hours. Immunohistochemical analysis of paraffinembedded mouse brain tissue slide using 20257-1-AP (SCN9A/Nav1.7-Specific antibody) at dilution of 1:200 (under 40x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).