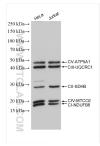
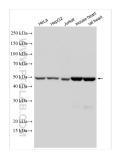
For Research Use Only

ATP5A1 Polyclonal antibody Catalog Number: 14676-1-AP 143 Publications

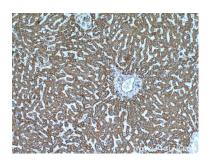
	Catalog Number: 14676-1-AP	GenBank Accession Number: BC064562		Purification Method: Antigen affinity purification	
	Concentration:	GenelD (NCB):	Recommended Dilutions:	
	400 ug/ml	498		WB 1:5000-1:50000	
	Source: Rabbit	UNIPROT ID:		IP 0.5-4.0 ug for 1.0-3.0 mg of total protein lysate	
	Isotype:	Full Name:		IHC 1:50-1:500 IF/ICC 1:400-1:1600	
	lgG				
	Immunogen Catalog Number: AG6385				
				Observed MW 50-55 kDa	<i>l</i> :
		Applications	Tested Applications:		Positive Con
Cited Applications: cells, mo				a cells, various samples, HepG2 cells, Jurkan use heart tissue, rat heart tissue, mouse live t liver tissue, mouse brain tissue, rat brain	
			tissue		
human, mouse, rat IP : HeLa ce			S,		
human may see ant manifest rehundigh hamatan				liver tissue, human brain tissue, human human kidney tissue, mouse brain tissu	
Note-IHC: suggested antigen retrieval with TE buffer pH 9.0; (*) Alternatively, antigen retrieval may be performed with citrate buffer pH 6.0					
Background Information	The ATP5A1 gene encodes the α subunit of mitochondrial ATP synthase which produces ATP from ADP in the presence of a proton gradient across the membrane. The mitochondrial ATP synthase, also known as Complex V or F1F0 ATP synthase, is a multi-subunit enzyme complex consisting of two functional domains, the F1-containing the catalytic core and the Fo-containing the membrane proton channel. F0 domain has 10 subunits: a,b, c, d, e, f, g, OSCP A6L, and F6. F1 is composed of subunits α , β , γ , δ , ε , and a loosely attached inhibitor protein IF1. Recently defect in ATP5A1 has been linked to the fatal neonatal mitochondrial encephalopathy. ATP5A1 is localized in the mitochondria and anti-ATP5A1 can be used as the loading control for mitochondrial or Complex V proteins. This antibody recognizes the endogenous ATP5A1 protein in lysates from various cell lines and tissues. The predicted MW of ATP5A1 is 60 kDa, while it undergoes the transit peptide cleavage to become a mature form around 50-55 kDa. Several isoforms of ATP5A1 exist due to the alternative splicing.				
	MW of ATP5A1 is 60 kDa, while it	undergoes the trai	nsit peptide cleavage t	•	
Notable Publications	MW of ATP5A1 is 60 kDa, while it i kDa. Several isoforms of ATP5A1 e	undergoes the trai	nsit peptide cleavage t	•	
Notable Publications	MW of ATP5A1 is 60 kDa, while it i kDa. Several isoforms of ATP5A1 e Author	undergoes the trai exist due to the al	nsit peptide cleavage t ternative splicing.	o become a mature form around 50-55	
Notable Publications	MW of ATP5A1 is 60 kDa, while it is kDa. Several isoforms of ATP5A1 a Author Fujie Li	undergoes the trai exist due to the al Pubmed ID	nsit peptide cleavage t ternative splicing. Journal	o become a mature form around 50-55 Application	
Notable Publications	MW of ATP5A1 is 60 kDa, while it is kDa. Several isoforms of ATP5A1 e	undergoes the trai exist due to the al Pubmed ID 31563988	nsit peptide cleavage t ternative splicing. Journal Arch Toxicol	o become a mature form around 50-55 Application WB	
Notable Publications Storage	MW of ATP5A1 is 60 kDa, while it is kDa. Several isoforms of ATP5A1 e	undergoes the trai exist due to the al Pubmed ID 31563988 32962196 31525119 after shipment. 50% glycerol pH	nsit peptide cleavage t ternative splicing.	o become a mature form around 50-55 Application WB WB	

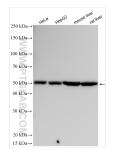

T: 4006900926

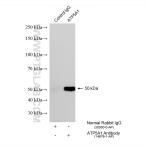
For technical support and original validation data for this product please contact: E: Proteintech-CN@ptglab.com


W: ptgcn.com

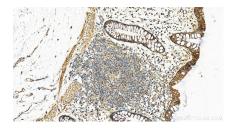
This product is exclusively available under Proteintech Group brand and is not available to purchase from any other manufacturer.

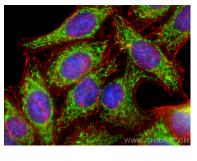

Selected Validation Data

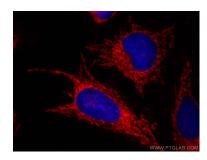

Various lysates were subjected to SDS PAGE followed by western blot with PK30006 (OXPHOS Cocktail (Human recommended)) at dilution of 1:4000 incubated at room temperature for 1 hours.


Various lysates were subjected to SDS PAGE followed by western blot with 14676-1-AP (ATP5A1 antibody) at dilution of 1:10000 incubated at room temperature for 1.5 hours.

Immunohistochemical analysis of paraffinembedded human liver tissue slide using 14676-1-AP (ATP5A1 antibody) at dilution of 1:200 (under 10x lens).


Various lysates were subjected to SDS PAGE followed by western blot with 14676-1-AP (ATP5A1 antibody) at dilution of 1:20000 incubated at room temperature for 1.5 hours.


IP result of anti-ATP5A1 (IP:14676-1-AP, 4ug; Detection:14676-1-AP 1:15000) with HeLa cells lysate 1750 ug.


Immunohistochemical analysis of paraffinembedded mouse brain tissue slide using 14676-1-AP (ATP5A1 antibody) at dilution of 1:400 (under 10x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunohistochemical analysis of paraffinembedded human colon tissue slide using 14676-1-AP (ATP5A1 antibody) at dilution of 1:2000 (under 20x lens). Heat mediated antigen retrieval with Tris-EDTA buffer (pH 9.0).

Immunofluorescent analysis of (-20°C Ethanol) fixed HepG2 cells using ATP5A1 antibody (14676-1-AP) at dilution of 1:400 and Coralite®488-Conjugated AffiniPure Goat Anti-Rabbit IgG(H+L), CL594-Phalloidin (red).

Immunofluorescent analysis of (-20°C Ethanol) fixed HeLa cells using ATP5A1 antibody (14676-1-AP) at dilution of 1:800 and CoraLite®594-Conjugated AffiniPure Goat Anti-Rabbit IgG(H+L).